Chemistry

Name: Date: Teacher: Class/Period:

- 1) Which property of an apple is different on Earth than it is on the Moon?
 - A. Density
 - B. Mass
 - C. Volume
 - D. Weight
- 2) What is the volume, in mL, of a sample of glycerol with a density of 1.20 g/mL and a mass of 43.7 g?
 - A. 36.4
 - **B.** 42.5
 - **C.** 44.9
 - **D.** 52.4
- 3) Which statement is always true for a compound?
 - A. It is homogeneous.
 - B. It contains only 1 element.
 - C. Its chemical composition varies.
 - **D.** It decomposes by physical means.
- 4) Chemists add ammonium lauryl sulfate (CH₃(CH₂)₁₁SO₄NH₄) to shampoo to reduce the surface tension of water. How many hydrogen (H) atoms are in 1 molecule of ammonium lauryl sulfate?
 - **A.** 9
 - **B.** 20
 - **C.** 25
 - **D.** 29
- 5) Which representation is a structural formula?
 - A. 0
 - **B.** HO
 - **C.** H_2O_2
 - **D.** H-O-O-H
- **6)** Which statement correctly describes 1 mole of iodine (I_2) ?
 - **A.** Its mass is 126.9 q.
 - **B.** Its mass is 380.7 q.
 - **C.** It contains 6.02×10^{23} atoms.
 - **D.** It contains 6.02×10^{23} molecules.

- 7) What is the gram formula mass, in g/mol, of aluminum nitrate (Al(NO₃)₃) ?
 - A. 88.99
 - **B.** 151.00
 - **C.** 165.01
 - **D.** 213.01
- 8) What is the name given to anything that takes up space and has mass?
 - A. Compound
 - B. Matter
 - C. Mixture
 - D. Substance
- 9) At standard atmospheric pressure, Terell heats a sample of caffeine. At 178°C, the solid converts directly into a gas. What is the name of this phase change?
 - A. Sublimation
 - **B.** Evaporation
 - C. Crystallization
 - D. Condensation
- **10)** At 22°C, the air pressure in a car tire is 1293 torr. Convert this pressure to atmospheres (atm).
 - A. 12.76
 - **B.** 5.262
 - C. 1.701
 - **D.** 1.293
- **11)** Which statement accurately compares solids, liquids, and gases at the molecular level?
 - **A.** Liquid molecules move at the highest speeds.
 - **B.** Solid molecules move at the slowest speeds.
 - **C.** Gas molecules are the closest together.
 - **D.** Solid molecules are the farthest apart.

- **12)** At constant temperature, Kelly increases the volume of a fixed amount of a gas. Use the kinetic-molecular theory to explain how increasing the volume affects the pressure of the gas.
 - **A.** The pressure decreases because there are fewer collisions between gas molecules and the container walls.
 - **B.** The pressure decreases because there are more collisions between gas molecules and the container walls.
 - **C.** The pressure increases because there are fewer collisions between gas molecules and the container walls.
 - **D.** The pressure increases because there are more collisions between gas molecules and the container walls.
- 13) Luis prepares a carbonated beverage using carbon dioxide gas (CO_2), solid sucrose ($C_{12}H_{22}O_{11}$), and liquid water (H_2O). Identify only the solute(s).
 - A. CO₂
 - **B.** H₂O
 - C. CO₂ and C₁₂H₂₂O₁₁
 - **D.** $C_{12}H_{22}O_{11}$ and H_2O
- **14)** A chemist dissolves potassium chloride (KCl) in water until no more KCl dissolves. How would the chemist most accurately classify this solution?
 - A. Dilute
 - B. Saturated
 - C. Unsaturated
 - **D.** Supersaturated
- 15) Which substance is a solution?
 - A. Sand
 - B. Molten gold
 - C. Graphite
 - D. Brass

16) A chemistry student has 4 empty cubes. Two of the cubes have 1 cm sides and masses of 0.5 g. The other two cubes have 2 cm sides and masses of 1.0 g. The student adds 1 or more balls to each cube, as shown in this table.

	Cube Experiment											
Cube	Side length (cm)	Mass of empty cube (g)	Number of balls added									
Α	1	0.5	1									
В	1	0.5	2									
С	2	1.0	8									
D	2	1.0	11									

The mass of each ball is 1.0 g. After the addition of the ball(s), which cube has the greatest density?

- A. Cube A
- B. Cube B
- C. Cube C
- D. Cube D
- 17) Deuterium (²H) is an isotope of hydrogen (H). During a chemistry experiment, a student observes that both of these reactions occur.

$$H_2(g) + Cl_2(g) \rightarrow 2 HCl(g)$$

$${}^{2}H_{2}(g) + Cl_{2}(g) \rightarrow 2 {}^{2}HCl(g)$$

Which statement best explains the student's observations?

- A. Isotopes have different chemical properties.
- B. Isotopes have similar chemical properties.
- **C.** Isotopes have different physical properties.
- **D.** Isotopes have similar physical properties.
- **18)** What is the chemical formula of calcium cyanide?
 - A. CaCN
 - B. CaCN₂
 - **C.** Ca(CN)₂
 - D. Ca(CN)₃
- **19)** A sample of a compound containing only nickel (Ni) and oxygen (O) has a mass of 24.6 g. Analysis of the sample shows that 10.4 g is Ni and the remaining 14.2 g is O. What is the percent composition of Ni in this sample?
 - **A.** 26.8%
 - **B.** 42.3%
 - **C.** 57.7%
 - **D.** 73.2%

- **20)** What is the correct chemical formula for iron(III) sulfide?
 - A. Fe_2S_3
 - B. Fe₃S₂
 - **C.** $Fe_2(SO_4)_3$
 - **D.** $Fe_3(SO_4)_2$
- 21) A chemist purchases a small gas cylinder containing 150.0 g of phosphorus trifluoride (PF_3) gas. How many molecules of PF_3 are in the gas cylinder?
 - **A.** 3.531×10^{23}
 - **B.** 1.026×10^{24}
 - **C.** 3.734×10^{25}
 - **D.** 1.433×10^{26}
- **22)** This diagram shows a closed-end mercury (Hg) barometer.

When atmospheric pressure is 1.30 atm, what is the height (h), in millimeters, of the Hg in the barometer?

- A. 132
- **B.** 585
- C. 760
- **D.** 988
- 23) At 1.00 atm, a sealed weather balloon contains 20.0 L of helium (He) gas at 25.0°C. Assume that none of the He escapes and the pressure is constant. What is the volume, in liters, of He in the weather balloon at 35.0°C?
 - A. 40.0
 - **B.** 28.0
 - **C.** 20.7
 - **D.** 14.3

- 24) What is the wavelength, in m, of red light with a frequency of 5.80 \times 10^{14} Hz ?
 - **A.** 3.85×10^{-19}
 - **B.** 5.17×10^{-7}
 - **C.** 1.93×10^6
 - **D.** 1.74×10^{23}
- **25)** Cobalt-60 ($_{27}^{60}$ Co) is an isotope of elemental Co. How many protons and neutrons are in the nucleus of a neutral $_{27}^{60}$ Co atom?
 - A. 27 protons and 33 neutrons
 - B. 27 protons and 60 neutrons
 - C. 33 protons and 27 neutrons
 - D. 33 protons and 60 neutrons
- **26)** A pharmacist prepared a liquid medication and gave instructions to shake the medication well before using. How did the pharmacist most likely formulate the medicine?
 - **A.** As a suspension with particles that settled to the bottom of the container
 - **B.** As a true solution with particles that settled to the bottom of the container
 - **C.** As a colloid with particles that remain unevenly distributed throughout the container
 - D. As a homogeneous mixture with particles that remain unevenly distributed throughout the container
- **27)** A technician dissolves 20.0 g of magnesium bromide (MgBr₂) in 100.0 g of water (H₂O). What is the percent composition of MgBr₂ in the solution?
 - A. 10.9%
 - **B.** 13.0%
 - C. 16.7%
 - **D.** 20.0%

28) In chemistry class, a student studies this reaction.

$$A(g) + B(g) \rightarrow C(g)$$

The student performs the reaction 3 times in a sealed 2.5 L vessel at 25°C. The student uses different amounts of Reactants A and B in each reaction. The student measures the rate of each reaction and records the results in this table.

Reaction Rates									
Reaction	A (mol)	B (mol)	Rate of reaction (M/sec)						
1	0.018	0.018	0.026						
2	0.025	0.025	0.038						
3	0.032	0.032	0.052						

According to the kinetic theory, which statement provides the best explanation for the data in the table?

- **A.** The reaction rate decreases at higher concentrations of reactants because fewer collisions occur between the reactants.
- **B.** The reaction rate decreases at lower concentrations of reactants because more collisions occur between the reactants.
- **C.** The reaction rate increases at higher concentrations of reactants because more collisions occur between the reactants.
- **D.** The reaction rate increases at lower concentrations of reactants because fewer collisions occur between the reactants.
- 29) A student in the chemistry club must send 25 invitations to chemists for the school's career day. Which action is the rate-determining step in sending the invitations?
 - A. Placing the letters in the envelopes
 - B. Putting stamps on the envelopes
 - **C.** Writing the letters
 - **D.** Signing the letters
- 30) What is the percent by mass of chlorine (CI) in $BaCl_2 \cdot 2 H_2O$?
 - A. 14.5%
 - **B.** 17.0%
 - C. 29.0%
 - **D.** 34.1%

31) This table shows the percent composition data for an unknown organic compound.

Element	% Composition
С	70.54
Н	10.66
0	18.80

What is the empirical formula of this compound?

- A. C_5H_9O
- **B.** C₆H₁₁O
- C. C₇H₁₀O₂
- **D.** $C_8H_8O_2$
- **32)** At 83.7 kPa and 35.0°C, what is the density, in g/L, of phosphorus hydride (PH₃) ?
 - A. 0.528
 - **B.** 1.11
 - C. 1.52
 - **D.** 2.39
- **33)** Sylvia heats 2.28 g of a liquid until it completely vaporizes. The boiling point of the liquid is 56.3°C. She collects all of the gas in a 750.0 mL vessel. The pressure of the gas is 1.41 atm at 56.3°C. What is the molar mass, in g/mol, of the liquid?
 - **A.** 9.97
 - **B.** 22.3
 - C. 58.3
 - **D.** 121
- **34)** Calcium chloride (CaCl₂) reacts with sodium phosphate (Na₃PO₄) to produce calcium phosphate (Ca₃(PO₄)₂) and sodium chloride (NaCl).

$$3 \operatorname{CaCl}_{2}(aq) + 2 \operatorname{Na}_{3}\operatorname{PO}_{4}(aq) \rightarrow \operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2}(s) + 6 \operatorname{NaCl}(aq)$$

When a chemist adds 200.0 mL of 0.150 M $CaCl_2(aq)$ to 115.0 mL of 0.250 M $Na_3PO_4(aq)$, what is the maximum number of moles of $Ca_3(PO_4)_2$ that the reaction can produce?

- A. 0.0100
- **B.** 0.0144
- **C.** 0.0288
- **D.** 0.0300

- 35) Dr. Estevez developed Molecule X as a new biodegradable treatment for ice on roads. Molecule X is very soluble in water (H₂O), and it does not cause corrosion on automobiles. Molecule X is nonvolatile, and it is a nonelectrolyte. When Dr. Estevez dissolves 4.25 mol of Molecule X in 3.00 kg of H₂O, what is the freezing point of the resulting solution?
 - A. -1.31°C
 - **B.** −2.33°C
 - **C.** -2.64°C
 - **D.** −7.25°C

QualityCore

Formulas and Constants for the QualityCore™ Chemistry I Formative Assessments

Atomic Structure

E = hv E = energy

h = Planck's constant = 6.63×10^{-34} J·s

 $c = \lambda v$ v = frequency

c = speed of light = 3.0×10^8 m/s

 $E_K = \frac{1}{2}mv^2$ $\lambda = wavelength$

 E_K = kinetic energy

m = mass

v = velocity

 $N_A = Avogadro's number = 6.02 \times 10^{23} mol^{-1}$

Gases

 $\lambda = \frac{h}{mv}$

m = mass $T(K) = {}^{\circ}C + 273$ V = volume

T = temperature $P_{total} = P_A + P_B + P_C + ...$ P = pressure

n = number of moles

M = molar mass

 $n = \frac{m}{M}$ Rate = rate of effusion STP = 1.00 atm and 0.00°C

 $d = \frac{PM}{RT}$ 1 atm = 760 mm Hg = 760 torr = 101.3 kPa

1 mol of ideal gas = 22.4 L at STP

$P_1V_1 = P_2V_2$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$\frac{\text{Rate}_{A}}{\text{Rate}_{B}} = \frac{\sqrt{M_{B}}}{\sqrt{M_{A}}}$$

Percent Yield and Percent Error

% Yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100$$

% Error =
$$\frac{\left|\text{accepted value} - \text{experimental value}\right|}{\text{accepted value}} \times 100$$

Liquids and Solutions

Percent (mass/mass) =
$$\frac{\text{mass of solute (g)}}{\text{mass of solution (g)}} \times 100$$

$$M = \frac{\text{moles of solute}}{\text{L of solution}}$$

$$m = \frac{\text{moles of solute}}{\text{kg of solvent}}$$

$$X_A = \frac{moles_A}{moles_{total}}$$

$$M_1V_1 = M_2V_2$$

$$\Delta T_f = K_f \times m$$

$$\Delta T_b = K_b \times m$$

M = molarity

m = molality

X_A = mole fraction of component A

V = volume

 ΔT = temperature change

 $K_f = molal$ freezing point depression constant

 $K_f(H_2O) = 1.86$ °C/m

K_h = molal boiling point elevation constant

 $K_b (H_2O) = 0.512 ^{\circ}C/m$

Calorimetry, Thermodynamics, and Electrochemistry

$$q = mC\Delta T$$

$$\Delta H_{rxn}^{o} = \Delta H_{r}^{o}(products) - \Delta H_{r}^{o}(reactants)$$

$$\Delta S_{rxn}^{o} = S^{o}(products) - S^{o}(reactants)$$

$$\Delta G^{\circ} = -nFE^{\circ}_{cell}$$

$$E_{\text{cell}}^{o} = E_{\text{red}}^{o} - E_{\text{oxid}}^{o}$$

q = heat

m = mass

C = specific heat capacity

 $C(H_2O) = 4.184 \text{ J/g} \cdot {}^{\circ}C$

 ΔT = temperature change

 ΔH° = standard enthalpy change

 ΔS° = standard entropy change

 ΔG° = standard free energy change

n = number of moles of electrons

F = Faraday's constant =

 $[H^+] = H^+ \text{ molarity}$ $[OH^-] = OH^- \text{ molarity}$

 $K_w = 1.0 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$

 K_{eq} = equilibrium constant K_{sp} = solubility product constant

96,500 coulombs/mol of electrons

 $E_{\text{cell}}^{o} = \text{standard cell potential}$

 E_{red}^{o} = standard reduction potential of the

half-cell where reduction occurs

 $E_{\text{oxid}}^{\text{o}}$ = standard reduction potential of the half-cell where oxidation occurs

 $K_w = \text{ion-product constant for water}$

Acids, Bases, and Equilibrium

$$pH = -log[H^+]$$

$$pOH = -log [OH^-]$$

$$pH + pOH = 14$$

$$K_{w} = [H^{+}][OH^{-}]$$

$$K_{eq} = \frac{[C]^c[D]^d}{[A]^a[B]^b} \text{ where a A + b B} \Longrightarrow c C + d D$$

$$K_{sp} = [A^+]^a [B^-]^b$$
 where $A_a B_b(s) \Longrightarrow a A^+(aq) + b B^-(aq)$

QualityCore

C	ь Не	.003	10	Ne	20.18	18	Ar	9.95	36	호	3.80	54	Xe	31.3	98	R	222)				
_		4	-		19.00 2										_		(210) (3	14			
			_																		
					16.00									_			(506)				
			7	Z	14.01	15	Δ.	30.97	33	As	74.92	51	Sb	121.8	83	Bi	209.0				
			9	U	12.01	14	Si	28.09	32	ge Ge	72.59	20	Sn	118.7	82	Pb	207.2				
			Ŋ	8	10.81	13	Ā	26.98	31	Ва	69.72	49	'n	114.8	81	F	204.4				
ıtç.	<u>}</u>										65.38				_						
Periodic Table of the Flements	<u>.</u>										63.55				_						
f the F)								28	Z	58.69	46	Pd	106.4	78	ᆂ	195.1	110	Ds	(281)	
ahle c)								27	ပိ	58.93	45	R	102.9	77	ī	192.2	109	¥	(568)	
indic 1										55.85											
Per	-								25	Σ	54.94	43	٦ _C	(86)	75	Re	186.2	107	Bh	(564)	
									24	ວ້	52.00 54.94	42	Ψ	95.94	74	3	183.9	106	Sg	(263)	
									23	>	50.94	41	S	92.91	73	La	180.9	105	op Op	(262)	
									22	F	47.88	40	Zr	91.22	72	Ŧ	178.5	104	R	(261)	/
											44.96				_			-	Act	(227)	
			4	Be	9.012	12	Mg	24.31	20	ပ္မ	40.08	38	Sr	87.62	56	Ba	137.3	88	Ra	226.0	1
	- I	1.008	3	=	6.941															(223)	1

©2007 by ACT, Inc. All rights reserved.

62636465666768697071SmEuGdTbDyHoErTmYbLu150.4152.0157.3158.9162.5164.9167.3168.9173.0175.0949596979899100101102103PuAmCmBkCfEsFmMdNoLr(244)(243)(247)(247)(251)(252)(257)(259)(259)(260)

61 **Pm** (145) 93 **Np** (237)

Answer Key

- 1) D
- 2) A
- 3) A
- 4) D
- 5) D
- 6) D
- 7) D
- 8) В
- 9) Α
- 10) С
- 11) В
- 12) Α
- 13) С
- 14) В
- D 15)
- 16) В
- В 17)
- С 18)
- 19) В
- 20) Α
- 21) В
- 22) D
- С 23)
- 24) В
- 25) Α
- 26) A
- 27) С
- C 28)
- 29) С
- С 30)
- 31) A
- 32) В
- 33) C
- 34) Α
- С 35)